Journaled File LIBrary (libjf) tutorial

“from the ground up”

Christian Ferrari

tiian@users.sourceforge.net

Journaled File LIBrary (libjf) tutorial: “from the ground up”
by Christian Ferrari

Copyright 2005 Christian Ferrari.

Trademarks are owned by their owners.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy
of the license is included iAppendix A

Table of Contents

ADOUL THIS BOOK ...t n et e s i
Ao L0111/ 1= To o g =Y g1 5 i
B2 = L=V 1S (0T T 1= (] Y i
3. Source and pre-formatted versions availahle............ccoeeeciciniene s i
4. Typographical CONVENLIONS. ..ottt i
5. English language and other @dS........c.coovevnieiirnnee s ii

R 11 To 11 ox 1T o SRR 1
R O I = To [o = T S 1
IO T = = o 1
1.3. What's @ “IranSaCtION 2........ociiere ettt sttt e e st ste e seeneenennes 1
1.4. What's file “JOUrN@lING” 2......c.coireiiieiree ettt e 2

1.4.1. Data integrity iSSUE EXAMPIES......ccoiiirieirieeriee et 3
1.4.2. Data integrity issue with only one file.........cccoeiniee 5
1.5. WhO Should USE lIDJf2....ceiee et 5
1.6. WAt lIDJf IS NOT2.....eieeeeee e e 6
R o] 1 F= 1o o] = L1 T o PSS 6

A C 1] 1] To K] r= T (=To H ST 8
P2 10T o] oJo] (=To B=T ol 01 (=Tt (U =X USRS 8
2.2. Retrieving and iNSEAlING.........coi i e 8

A N - od ¢ Vo L= = T T S 9
A O | T 1= 1 o PR 10
ARG T o [To IRV 0T (o [o] o o > o OO 10
2.3.1. Hello world COmMPIIALION.........cccoiirieesece e e 11
2.3.2. Hello WOIld @XECULION. ..o s 13
2.4, HEIO WOIT Tl 13
2.5, HEO WOIT Tl 15
2.5.1. Hello world H COMPIIE & MUM........coiieiiiieeeeecse et s enens 17
2.6. Hello world Saga CONCIUSIONS.........ccvcoiriiesiiseresiee sttt st se e sn e naens 18

B IDJf DASICS .. 19

3.1. Many journaled files, ONe JOUINAL..........coooriiieiree e 19
3.1.1. two_files.c COMPIlE AN FUMN.......cooiiiiieree bbb 22
3.1.2.two_files.c INTEreStiNG ASPECLS.....c.iieeeiireiirie e 23

3.2. Two journaled files and an application Crash..........ccocoveirierneinn e 24

3.3. Two journaled files and a partial tranSACHON..........ccocerrirrereree e 26

3.4. The recovery PeNding STALLIS.........ccoo ittt s b e 29
3.4.1. AULOMALIC FECOVEIY....c.ectieetieeteesieie ettt sttt sttt b e et s b e sb e eb e 31

B0 TR T 1=]SS 32
3.5. 1. CONCIUSIONS.....c.eiuieieieeiesie ettt sttt se e b st e b et e e sesbesbeseeseeneeneas 34
3.5.2. FULUre deVEIOPMENLS.ccciiiiiierieiereeie ettt ettt en e 34

3.6. RESIArable rEAUS.ot et 34
3.6.1. Compilation and EXECULIQN..........c.ceiiriieieeee e s 35
3.6.2. Restartable reads and rollDack.............coooiiii i 36
3.6.3. CONCIUSIONS......eeuiiiiieeiie ettt bt ettt b e b ettt e b e beseeseeeeneas 38

3.7. Other “Open MOUE” OPLIONS.c.iieeeeee ettt b et e bbb e 38

4. 1. SYNCIIONIZALION TYPE....cectiieetiieiterieteert ettt ettt st et b e b e b e 39
4.1.1. libjf fast SYNCArONIZALION.........c..ciriivieiiirieree s 39
4.1.2. libjf safe SYNCAroNIZAtION..........coooiirriireree e 39
4.1.3. How can an application choose the type of synchronization?............ccccocecevueuene. 39
4.1.4. Playing with Synchronization tyPRe........cccoeeeieriiereeee et 40
4.1.5. How is synchronization teSted2.........coco i 42

4.2. Journaling and CaCKiNg..........ooieiie et et e 42
4.2.1. Compilation and EXECULIQN........c.coiierieieenere et 45
4.2.2. How cache size limit can be tuned...........cccooiiiiciini e 46

4.3, liDJf ODJECT OPLIONS. ... ettt et bbb e 46

T U1 1Y T o o =T 1 4 L TSRV 48

5.1.jf_create: JOUrNal CrEaAtION.........ccvieeiiee ettt te s e e e reennennas 48

o | o 11 IR Lo 11 = o 101 T S 48

5.3.jf_rename: rename a journaled fil.......cc.ccvieieiciecinie s 49

5.4.jf_|eave; 18aVEe @ JOUIMAL.........cciie ittt n e ens 50

5.5.jf_report : iINSPECHNG @ JOUMMN@L......c.ccueeeeri et 51

5.6.jf_reCOVEr: rECOVEN @ JOUMNAL........ccveeeeeeeeesierie et sttt s e s ne e sneaeneens 52

5.7.jf_bench: performance MeasuremMeNLt.........cccooeveeeririeirsineserese e se e 52

(ST DI=T o101 To TTaTo Jr=T o] o1 T= o T S 53

6.1.printf APPFOACK... ..o e 53
6.1.1. Error codes’ rule Of thUMDB.........coiiiieeee e e 54

L2 N TS 1 = Tt IR=]] {0 - T o R 54
6.2.1. How can | guess if libjf was compiled with debug feature?...........cccccvevvevvrenene 55

6.3. The debugger apProach..........oo e s 56

A. GNU Free DocumMeNntation LICENSE.......oiiieieiiieies ettt s 57

AL PREAMBLE ...ttt sttt ettt et s s e e e s ene s e st enestenenaeneen 57

A.2. APPLICABILITY AND DEFINITIONScotiiiireirieiriee et ee 57

A.3. VERBATIM COPYING.....cootieiiieirieisieiseetesestesessesessesessssessssessesessssessssessssessssessssessssessssesenes 58

A.4. COPYING IN QUANTITY outieirieirietisieiisietesestees e tesesss e sessasaesesaesessssessssesessssesssssssesesseseses 59

A.5. MODIFICATIONS. ..ottt sttt se et ssesessese s s senessesessesessesessenessesenen 59

A.6. COMBINING DOCUMENTS......cctiitirieiirieiinisiesesieesieseses s sae s sse e ssesessesesseseses 61

A.7. COLLECTIONS OF DOCUMENTS.....cceitirirtiririiirieririeeseeseseeessssessssesessesessesessssessesesseseses 61

A.8. AGGREGATION WITH INDEPENDENT WORKS.......ccoiirieinieiineesieesiseseee s 62

A9, TRANSLATION ...ttt sttt s e b sa b e s e s e s b enessene s enenaeneneenessesenen 62

A.10. TERMINATION. .. ettt sttt sttt sa s saebe s be e senessenessesenseneseeneseesenes 62

A.11. FUTURE REVISIONS OF THIS LICENSE.......cccootitriirietrieenses st 63

A.12. ADDENDUM: How to use this License for your documents...........ccccoceevvrveceernseennnn 63

List of Tables

4-1. Create/open methods SIrUCT SUMIMALY.......c.ccciiiiereieeee e seee e e e s see e sre e tesreeeesreseeseesseenee e 46

List of Examples

2 I 1= o TR 4 T RS 10
2 1= o TR 4 T 2 oS 14
2 N o T=Y o TR 4 o 2 oS 15
I I 1Y T 1 (T o2 PSP 19
I (VYo I 1 (S o] = T X oS PSP 24
I R (VYo I {1 (S ol = T 12K SRR 27
B o (o1 (o X o U PSP PRTPRT 33
3-5.1eStartable_rBaOS.C oo e bbbt et e e b e a e b b e e e 34
3-6.restartable_reads_rollDack.C e 36
g I 0V L= (o TR0 T (o X oSS 40
E o= Yot o Y14 = X R USSR 43
LRt I (=Y 1 o o o OSSPSR 53

About This Book

1. Acknowledgments

This is my first docbook work (in the past | used LaTeX) and as an “absolute beginner” | picked-up a
good work and started “cut & paste” activity. The SGML of this book has initially copied from “Linux

System Administration Guide”, so special thank& tosWirzenius Joann®ja, Stepheitaffordand
AlexWeeks

The subtitle of this book has been copied from “C++ from the ground up”, a cornerstone in the history of
programming books. A special thanksHerberSchildtand his easy to understand books.

2. Revision History

Revision History

Revision 0.1 2005-09-12 Revised by: Ch.F.
1. First version.

3. Source and pre-formatted versions available

The source code and other machine readable formats of this book can be found on the Internet via
anonymous HTTP at the libjf home page http:/libjf.sourceforge.net/ (http:/libjf.sourceforge.net/). This
book is available in at least its SGML source, as well as, HTML and PDF formats. Other formats may be
available. HTML and PDF versions can be produced with this sequence of commands:

tar xvjf libjf- v.r.p-c.a.e-YYYYMMDDhhmm .tar.bz2
cd libjf- v.r.p

Jconfigure

make html

make pdf

4. Typographical Conventions

Throughout this book, | have tried to use uniform typographical conventions. Hopefully they aid
readability. If you can suggest any improvements please contact me.

About This Book

Command names are expressedfaseport

C constants are expressed #5:RC_OK

C functions are expressed #&tish

C structs are expressed as: jf_journal_opts_s
C struct fields are expressed escovery_enabled
C types are expressed as: jf_word _t.

C vars are expressed #fs..

Filenames are expressed agi/libjf

| will add to this section as things come up whilst editing. If you notice anything that should be added
then please let me know.

5. English language and other ads

Unfortunately my English is very poor and this paper contains many mistakes and misunderstanding
sentences; any help in fixing grammar and/or form will be appreciated.

This tutorial and the documented examples has been developed on a GNU/Linux system: if you use a
different environment some details will need some tuning.

The examples contained in this tutorial has been developed and tested with libjf-0.3.5

Chapter 1. Introduction

1.1. Trademarks
AlX, z/OS, OS/400 are trademarks of IBM.
GNU is a registered trademark of the Free Software Foundation.
HP-UX is a trademark of Hewlett Packard.
Linux is a registered trademark of Linus Torvalds.
Mac OS X is a registered trademark of Apple.

Microsoft, Windows, Windows NT, Windows 2000, and Windows XP are trademarks and/or registered
trademarks of Microsoft Corporation.

Solaris is a trademark of Sun Microsystems.
SuSE is a trademark of Novell.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company Ltd.

Other product names mentioned herein may be trademarks and/or registered trademarks of their
respective companies.

1.2. What's libjf?

LIBJF stands for Journaled Files LIBrary, so libjf is a library that supplies file journaling features to a
program.

Libjf is free software (LGPL license): please be sure you understood the license content before start to
use this software.

Libjf is a Tiian’s original idea, design and implementation. In real life, Tiian is Christian Ferrari.

Chapter 1. Introduction

1.3. What's a “transaction”?

A transaction is a “unit of work” that has the following (“ACID”)
properties.
Atomicity:

a transaction is an indivisible unit of work; all of its actions either succeed or they all fail (logical
units of work (LUW)). In the event of a failure of any operation, effects of all operations that make
up the transaction should be undone, and data should be rolled back to its previous state.

Consistency:

after the transaction executes, it must leave the system in a correct state or abort (leaving the system
in its initial state: COMMIT or ROLLBACK). For example, in the case of relational databases, a
consistent transaction should preserve all the integrity constraints defined on the data.

Isolation:

a transaction’s behavior is not affected by other transactions that execute concurrently. The effect of
executing a set of transactions serially should be the same as that of running them concurrently. This
requires two things:

- during the course of a transaction, an intermediate (possibly inconsistent) state of the data should
not be exposed to all other transactions

- two concurrent transactions should not be able to operate on the same data. Database
management systems usually implement this feature using locking.

Durability:

a transaction'’s effects are permanent (persistent) after it commits (information is saved in a
recoverable storage resource).

1.4. What's file “journaling”?

Journalingis related tdransactionsfile journaling allows a program to “commit” or “rollback” changes
performed against data.

Programmers used to deal with transactional databases like PostgreSQL™ and last releases of MySQL™
are already familiar with terms like “commit”, “rollback”, “data integrity” and so on.

I'll briefly explain these concepts; I'll assume you are a C addicted because libjf is a C library; I'll tend to
use C standard I/O instead BOSIXI/O functions because libjf can be ported to non POSIX systems too.

Take a look to this piece of code:

Chapter 1. Introduction
FILE *filel, *file2;

fprintf(filel, "Hello ");
fprintf(file2, "world\n");

Yeah, | mean, you'd prefer to write “Hello world!” on the same file (stream), but imagine you have to
write 2 records on 2 different files and want to be sure than exactly one of this condition is true:

. all the two records are stored on filel, file2

- no record is stored on filel, file2
Why should you want this “strange thing”?

Many times you need this behavior: every time you have related information stored in two or more files
you have to deal with a “data integrity issue”.

1.4.1. Data integrity issue examples

Filel contains a “bit map” of used/free records of file2: if file2 contains billions of records, a bit map
may improve dramatically the time wasted to look for a free record. Filel and file2 contents are strongly
related and “data integrity issue” must be solved before your application reach “production status”.

Filel contains “ack pending packets”, file2 contains “OK packets”: when an ack arrives, a record must be
deleted from filel and a record must be stored on file2. Filel and file2 are strongly related.

Sometimes, “data integrity issue” can be workarounded with a different data organization, sometimes
every workaround exploits one or more “race condition” and the “data integrity issue” must be solved.

Come back to our code:
fprintf(filel, "Hello ");

fprintf(file2, "world\n");

C standard I/O supplies a function can be used to flush application buffers and signal operating system a
write must be performedflush ; please pay attention thererie warranty data are stored on block
device (hard disk) aflush end (we will explain this later).

We can try to inserfflush in our program:

Chapter 1. Introduction

(Al

fprintf(filel, "Hello ");
[B]

fprintf(file2, "world\n");
[C]

fflush(filel);
[D]

fflush(file2);
[E]

Now we can analyze what happens if the program is interrupted, for example with a POSIX signal, at
step [A], [B], ... [E]

A. we are 100% sure files have not been updated

B. file2 has not been updated, filel might be updated (it depends from buffer status, filaling is
not a must to start buffer flushing)

C.filel might be updated, file2 might be updated
D. filel has been updated, file2 might be updated
E.filel and file2 have been updated.

Even if we supposed data are flushed onhyfflugh (this is generallynot true!), we couldhot
workaround the integrity issue of step D.

What aboufPOSIXI/O?

Using POSIX I/O implies usage efrite instead offprintf andfsync /fdatasync instead of

filush . The functions do not perform the same actions becB@®IXI/O does not use an application
side buffer andsync /fdatasync guarantees data are stored on block device (hard disk), but the “data
integrity issue”, in the event of a system crash, is the same:

int fd1, fd2;

const char *strl = "Hello "

const char *str2 = "world\n";
[A]

write(fdl, strl, strlen(strl));
(B]

write(fd2, str2, strlen(str2));
[C]

fsync(fdl);
[D]

fsync(fd2);
[E]

Chapter 1. Introduction

The “data integrity issue” at step D has a pattern like the example based on C standard I/O.

Our examples show there ameo type of matters:

« 1/O functions (printf , write , ...) donot specify at what time file update happens: it may be any
time betweerprintf (write) andfflush (fsync /fdatasync)

- there is not amtomic “flush”/“sync” function for 2 or more streams/file descriptors

1.4.2. Data integrity issue with only one file

Our previous examples showed us some typical data integrity issues that need a transactional tool to be
solved.

There are situations that can benefit from a transactional support even when only one file is used; the best
examples are text editors, office applications (word processors, spreadsheets, ...), configuration editors,
and more...

All around the world there are programs writing many copies of the same file and checking file integrity
at start-up to assure the text/document/configuration is consistent and is not affected by the consequences
of an application/system crash. All that stuff might be replaced by a transactional tool like libjf.

1.5. Who should use libjf?

In the previous paragraphs we showed some issues can be addressed by a journaling/transactional tool,
but why should | use libjf instead of a relational and transactional database?

A DBMS (Data Base Management System) is not only a transactional tool, it's a more powerful object
that implies a very different approach to coding, testing, software distribution and system management:

« query and updates are expressed as SQL statements: you may love it, you may hate it, you have to pay
a powerful language interpreter overhead for it

« a DBMS must be up and running to support your application
- some tables must be defined using DBMS specific DDL (Data Description Language) statements
- DBMS objects (tables, indexes, ...) must be managed

- some DBMS are not easily embeddable in your application and you must manage one more
dependency

Chapter 1. Introduction

- some DBMS do not provide an easy way to store/retrieve arbitrary data like structs and classes
DBMS have a lot of advantages too, especially if your application uses the most advanced features.
Now we can answer our original question: “Who should use libjf?”

If you need transaction support and aa interested in all the advanced features of a DBMS, libjf might
be your preferred tool.

If your application needs the features of a relational DBMS and you are thinking to “re-write the wheel”
using libjf, libjf is probably not what you are looking for.

1.6. What libjf is not?

It's not a DBMS (Data Base Management System).

It's not a journaled filesystem: libjf works on journaled (reiser, ext3, jfs, xfs...) and non journaled (ext2,
hfs...) filesystems.

It's not a “faster” tool to access files.

1.7. Collaboration

Development, porting and documentation are a hard work.

Are you a smart hacker?

Do you work with operating systems different than GNU/Linux?
Are you fluent in English language?

If you like, there’s room to collaborate at libjf project.

These topics must be addressed in the near future:

- porting to “old style” UNIX systems (AlX, HP-UX, Solaris, others...)
« porting to BSD systems (FreeBSD, OpenBSD, Mac OS X, others...)

Chapter 1. Introduction

« porting to native Microsoft Windows (2003, 2000, XP, etc...)

« porting to IBM z/OS

« porting to IBM OS/400

- performance tuning, system specific optimizations (after porting has been completed!)

» documentation review and improvement

If you would like to join this project, feel free to contact me atiian@users.sourceforge.net >

Chapter 2. Getting started

2.1. “Supported” architectures

Is there a list of supported architectures?
libjf is free software developed on a voluntary basis: the concept of “supported” is not proper.

libjf project keeps track of environments successfully tested: if your system is in that list, you should not
encounter big issues; if libjf has never been tested in an environment similar to your one, there might be a
bit of porting job to be performed. The track of stress tested environments is hosted at libjf official site:
http://libjf.sourceforge.net/ (http://libjf.sourceforge.net/)

libjf is currently developed on SUSE Linux operating system (SUSE Linux Professional 9.2): the closest
to this environment the fewest problems you should have.

2.2. Retrieving and installing
libjf official site is hosted aSourceForge.nehttp://libjf.sourceforge.net/ (http://libjf.sourceforge.net/)
Official packages are released only on SourceForge.net site, please avoid alternative sources.

Installing libjf on a “tested architecture” is a 6 steps task:

tar xvjf libjf-v.r.p-c.a.e-YYYYMMDDhhmm.tar.bz2
cd libjf-v.r.p

Jconfigure

make

make check

sudo make install

if something goes wrong, please refer to this resources:

- FAQ (distributed with the package and available on line at official site)
- README (distributed with the package)

« forums and tracker hosted on SourceForge.net

Please note “make check” step does not perform an “in depth” test: if you are interested in testing all the
features of libjf, take a look to shipped README file.

Chapter 2. Getting started

If you have completed your 6 steps installation, libjf should be installed at default/ppathijf);
should you prefer an alternative path, ugeefix ~ option atconfigure step. From now on we will
assume you have installed the library at its default path.

Installation procedure does not install documentation will remain in your package base sub-directory
doc.

It's suggested to append libjf “bin” directory to your environment RAmTH
tiian@linux:~/tutorial> export PATH=$PATH:/opt/libjf/bin/

tian@linux:~/tutorial> type jf report
jf_report is /opt/libjf/bin/jf_report

this can save you a lot of typing.

2.2.1. Package name

What's the meaning of a so large name?

libjf-v.r.p-c.a.e-YYYYMMDDhhmm.tar.bz2
libjf
library name

major version number

minor version number (release); even values for “stable” releases, odd values for “development”

releases
p
patch level
c
“current” library version as understood hitool
a
“age” library version as understood bigtool
e

“revision” library version as understood fiptool

Chapter 2. Getting started

YYYYMMDDhhmm

release timestamp as year, month, day, hours, minutes

tar
the file is a GNU tar file

bz2

the file is compressed withzip2 utility

2.2.2. Un-installing

If you are bored about libjf and want to un-install it, use the following command from package base
directory:

sudo make uninstall

please pay attention directories are not removed; to clean-up directories too you may use this
(dangerous) command:

rm -rf /opt/libjf

2.3. Hello world program

Every tutorial must start with “hello
world” program and libjf can not
violate this golden rule.

All the examples showed in this book are availablédn/tutorial/examples sub-directory
distributed with software package.

Example 2-1.hello_world.c

1 #include <jf _file.h >;

2 int main()

3 {

4 int rc;

5 jf_file_t jf;

6 size_t write;

7 rc = jf_file_open(&jf, NULL, "jf tut foo", "w", NULL);

10

Chapter 2. Getting started

8 if (JF_RC_OK != rc)

9 return 1;

10 rc = jf_file_printf(&jf, &write, "%s", "Hello world\n");
11 if (JF_RC_OK != rc)

12 return 1;

13 rc = jf_file_commit(&jf);

14 if (JF_RC_OK != rc)

15 return 1;

16 rc = jf_file_close(&jf);

17 if (JF_RC_OK != rc)

18 return 1,

19 printf("Hello world program is OKN\n");
20 return O;

21 }

Hello world code explanation

Row 1

to use libjf a program must include at legsfile.h header file

Row 5

declare objecjf of type jf_file_t:jf is a “journaled file object”

Row 7

open (create & open) for write (“w”) a journaled file of nafheut_foo and associate it to
objectjf ; second argumeniNULL) indicates a private journal must be used, fifth argumisot()
tells default parameters must be used

Row 10

write to journaled file some stuff; second argument is used to retrieve the number of bytes stored to
journaled file, other arguments minfigintf ~ function

Row 13

commit changes previously operated on journaledffile

Row 16

close journaled file

11

Chapter 2. Getting started

2.3.1. Hello world compilation

To compilehello_world.c sample code and link it against libjf | suggest you to lilseol and its
magic:

libtool --mode=link gcc -Wall -l/opt/libjf/include -L/opt/libjf/lib -Ijf \
-0 hello_world hello_world.c

options:

--mode=link

source code must be compiled and linked

gcc

use GNU C compiler

-Wall

activate all C compiler warnings

-l/opt/libjf/include
specify where libjf include files must be searched
-L/opt/libjf
specify where libjf archive/shared object must be searched
-ljf
specify the name of the library must be linked to the produced executable

-0 hello_world

name of the executable will be produced

hello_world.c

name of the source code file will be compiled

This version of “hello world” program is not so bad, isn't it? All the stuff around the 6 described rows is
an old tale: error checking and user feedback. You should note these essential points:

- libjf API (Application Programming Interface) is consistent to an object oriented model: the first
argument is the object the function (method) is working on

- most libjf functions (methods) return a return code of type int;jfife errors.h enumerates the
value setJF_RC_OK:is the “OK return code”, values greater th#fh RC_OKare “warning return
codes”, values lesser tharR_RC_OKare “error return codes”

12

Chapter 2. Getting started

- object types are not pointers, but functions (methods) expects references to objects: user application
can choose to allocate objects on stack (likedto_world.c example) or on heap (using
malloc /free functions); object sizes are not large enough to become a source of issues in today
supercomputer powered PCs era

. all changes must be committed before a journaled file is closed: uncommitted changes are backed out
(“implicit rollback™)

2.3.2. Hello world execution

If you correctly compilechello_world.c , in current directory you should be able to $elo_world
executable:

tian@linux:~/tutorial> Is -la hello_world*

-rwxr-xr-x 1 tiian users 10079 2005-08-10 22:10 hello_world
-rw-r--r-- 1 tiian users 578 2005-08-10 18:51 hello_world.c

to execute it type this command:

/hello_world

the program should print these sentence on your terminal:

Hello world program is OK!

And two files should appears in current directory:
tian@linux:~/tutorial> Is -la jf_tut_foo*

-rw-r--r-- 1 tiian users 13 2005-08-10 22:52 jf _tut_foo
-rw-r--r-- 1 tiian users 8311 2005-08-10 22:52 jf_tut_foo.jf

jf_tut_foo is the journaled file with the contehello_world program stored and committed:
tian@linux:~/tutorial> cat jf_tut_foo

Hello world!

jf_tut_foo.jf is the journal file implicitly created by libjf becausello_world program does not
specify a journal file. The journal is a binary file you can browse with utjfityeport ; try this command
from your terminal:

tian@linux:~/tutorial> jf _report -dt -j jf_tut_foo.jf

but this is a more intriguing tale can not be revealed at “hello world” step!

13

Chapter 2. Getting started

2.4. Hello world Il

Every saga needs at least a second
episode.

What happens if data are not committed to a journaled file? To discover the core of libjf transactionality
it's sufficient to removéf_file_commit statement as ihello_world2.c example:

Example 2-2.hello_world2.c

1 #include <jf_file.h >

2 int main()

3 {

4 int rc;

5 jf_file_t jf;

6 size_t write;

7 rc = jf_file_open(&jf, NULL, "jf tut foo", "w", NULL);
8 if (JF_RC_OK != rc)

9 return 1;

10 rc = jf_file_printf(&jf, &write, "%s", "Hello world\n");
11 if (JF_RC_OK != rc)

12 return 1;

13 rc = jf_file_close(&jf);

14 if (JF_RC_OK != rc)

15 return 1;

16 printf("Hello world 1l program is OKN\n");

17 return O;

18 }

Compilehello_world2.c with command:

libtool --mode=link gcc -Wall -l/opt/libjf/include -L/opt/libjf/llib -ljf \
-0 hello_world2 hello_world2.c

remove temporary files wrote by hello_world:
tian@linux:~/tutorial> rm -f jf_tut_foo*

and runhello_world2 program:
tian@linux:~/tutorial> ./hello_world2

Hello world 1l program is OK!

Take a look to files produced thello_world2 execution:

14

Chapter 2. Getting started

tian@linux:~/tutorial> Is -la jf_tut_foo*
-rw-r--r-- 1 tiian users 0 2005-08-11 11:05 jf_tut_foo
-rw-r--r-- 1 tiian users 8278 2005-08-11 11:05 jf_tut_foo.jf

jf_tut_foo is now an empty file because data was not committed before cillfilg close (this
behavior is named “implicit rollback”); just for the sake of curiosity, inspect the associated journal file:

tian@linux:~/tutorial> jf _report -dt -j jf_tut_foo.jf
<?xml version="1.0" encoding="UTF-8"? >
<journal >
<header magic_number="0x41524153" version="1" file_id_mask="0x8’
file_id_mask_shift="3" size_mask="0xfffffff0’ size_mask_shift="4’
file_size="4194304" file_num='3" rotation_threshold="0.800’

ctrl_recs='36" journal_recs='8278" / >
<journaled_file_table max_files="2" number_of_files="2’
file_table="0x804b170’ >
<file id="0" name='jf_tut_foo.jf’ last_pos="8278’ last_size="0’
status='0" last_uc_pos="0" last_uc_size='8278" stream='0x804b008’ / >
<file id="1" name='jf_tut_foo’ last_pos='0" last_size='0’ status="0’
last_uc_pos="0" last_uc_size="0" stream='(nil)’ / >
<ljournaled_file_table >
<records >

</[records >
<ljournal >

no records have been written.

2.5. Hello world Il

The final cut.
How (explicit) “rollback” works? To discover this kind of magic we're cookimgllo_world3.c
example.
Example 2-3.hello_world2.c

1 #include <jf_file.h >

2 int main()

34

4 int rc;

5 jf_file_t jf;

6 size_t write;

7 rc = jf_file_open(&jf, NULL, "jf tut foo", "w", NULL);
8 if (JF_RC_OK != rc)

9 return 1;

10 rc = jf_file_printf(&jf, &write, "%s", "Hello");

15

Chapter 2. Getting started

11 if (JF_RC_OK != rc)

12 return 1;

13 rc = jf_file_rollback(&jf);

14 if (JF_RC_OK != rc)

15 return 1;

16 rc = jf_file_printf(&jf, &write, "%s", " world\n");
17 if (JF_RC_OK != rc)

18 return 1;

19 rc = jf_file_commit(&jf);

20 if (JF_RC_OK != rc)

21 return 1;

22 rc = jf_file_close(&jf);

23 if (JF_RC_OK != rc)

24 return 1;

25 printf("Hello world Il program is OKN\n");
26 return O;

27 }

Hello world 11l code explanation

Row 1

to use libjf a program must include at legsfile.h header file

Row 5
declare objecjf of type jf_file_t:jf is a “journaled file object”
Row 7

open (create & open) for write (“w”") a journaled file of nafheut_foo and associate it to
objectjf ; second argumenNULL) indicates a private journal must be used, fifth argumeoiLQ)
tells default parameters must be used

Row 10

write to journaled file string “Hello”; second argument is used to retrieve the number of bytes stored
to journaled file, other arguments minifgintf ~ function

Row 13

rollback changes previously operated on journaledffilewrite of string “Hello” will be discarded
(undone)

Row 16

write to journaled file different stuff (string “ world\n")

16

Chapter 2. Getting started

Row 19

commit changes previously operated on journaledffile

Row 22

close journaled file

2.5.1. Hello world 11l compile & run

Use a command like this to compitello_world3.c source code:

libtool --mode=link gcc -Wall -l/opt/libjf/include -L/opt/libjf/lib -ljf \
-0 hello_world3 hello_world3.c

remove temporary files wrote by first and/or second episode of hello world saga:

tian@linux:~/tutorial> rm -f jf tut foo*

and runhello_world3 program:

tian@linux:~/tutorial> ./hello_world3
Hello world Il program is OK!

Take a look to journaled file and associated private journal:

tian@linux:~/tutorial> Is -la jf_tut_foo*
-rw-r--r-- 1 tiian users 8 2005-08-11 14:11 jf tut_foo
-rw-r--r-- 1 tiian users 8306 2005-08-11 14:11 jf tut_foo.jf

inspect journaled file jf_tut foo:

tian@linux:~/tutorial> cat jf_tut_foo
world!

The first string (“Hello”) was not stored in journaled file because an explicit rollback was performed,;
inspect journal content:

tian@linux:~/tutorial> jf_report -df -j jf_tut_foo.jf
<?xml version="1.0" encoding="UTF-8"? >
<journal >
<header magic_number='0x41524153" version="1" file_id_mask="0x8’
file_id_mask_shift="3" size_mask="0xfffffff0’ size_mask_shift="4’
file_size="4194304" file_num="3" rotation_threshold="0.800’
ctrl_recs='36" journal_recs='8278" / >
<journaled_file_table max_files="2" number_of_files="2’

17

Chapter 2. Getting started

file_table="0x804b170’ >
<file id="0' name='jf_tut_foo.jf’ last_pos="8306" last_size="0’
status='0" last_uc_pos="0" last_uc_size="8306" stream='0x804b008’ / >
<file id="1" name='jf tut_foo’ last_pos='8" last_size='8" status="2’
last_uc_pos="0" last_uc_size="0" stream='(nil)’ / >
<ljournaled_file_table >
<records >
<append jrn_rec_off="8278" file_id="1" size='8" offset="0’ >
<data type='redo’ format="hex’ >20 77 6f 72 6¢c 64 21 Oa </data >
<data type='redo’ format="text’ > world! </data >
<lappend >
<commit jrn_rec_off="8302" file_id="1"/ >

</[records >
<ljournal >

2.6. Hello world saga conclusions

These first three examples show basic usage of libjf library:

- journaled file creation
« how to write data
- how to commit data

+ how to rollback data
in the following chapters we will dive into more advanced features of libjf.

18

Chapter 3. libjf basics

3.1. Many journaled files, one journal

In the previous chapter we introduced a bit of libjf using only one journaled file at a time: that usage may
help you in writing easier programs because you don't have to implement the “back-out” logic, it's a gift

of libjf.

Now it's time to investigate how libjf can solve “data integrity issue” at its root; the following examples

will exploit only two journaled files, but the principle can be extended to any number.

Example 3-1.two_files.c

1 #include

14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32

<jf_file.h >

int rc;

size_t write;

jf_journal_t j;

jf_file_t jf1, jf2;

struct jf_journal_opts_s jopts;

struct jf_file_open_opts_s fopts;

const char *filel_datal = "First string for first file\n";

const char *filel data2 "Second string for first file\n";
const char *file2_datal "First string for second file\n";
const char *file2_data2 "Second string for second file\n";

jf_set_default_journal_opts(&jopts);
jopts.flags |= JF_JOURNAL_PROP_OPEN_O_CREAT |
JF_JOURNAL_PROP_OPEN_O_EXCL,;
rc = jf_journal_open(&j, "jf_tut_foo-journal”, 2, &jopts);
if (JF_RC_OK !=rc) {
printf("%d/%s\n", rc, jf_strerror(rc));
return 1;

}

jf_set_default_file_open_opts(&fopts);
fopts.join_the_journal = TRUE;
rc = jf_file_open(&jfl, &, "jf_tut_foo-datal", "w", &fopts);
if (JF_RC_OK !=rc) {

printf("%d/%s\n", rc, jf_strerror(rc));

return 1;
}
rc = jf_file_open(&jf2, &j, "jf_tut_foo-data2", "w", &fopts);
if (JF_RC_OK !=rc) {

printf("%d/%s\n", rc, jf_strerror(rc));

return 1;

19

33

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

68
69
70
71
72
73
74
75
76
e
78
79
80
81
82

}

rc = jf_file_write(&jfl, filel_datal, strlen(filel_datal),
&write);
if (JF_RC_OK !=rc) {
printf("%d/%s\n", rc, jf_strerror(rc));
return 1,
}
rc = jf_file_write(&jf2, file2_datal, strlen(file2_datal),
&write);
if (JF_RC_OK !=rc) {
printf("%d/%s\n", rc, jf_strerror(rc));
return 1;
}
rc = jf_journal_rollback(&j);
if (JF_RC_OK !=rc) {
printf("%d/%s\n", rc, jf_strerror(rc));
return 1;

}

rc = jf_file_write(&jfl, filel_data2, strlen(filel_data2),
&write);
if (JF_RC_OK !=rc) {
printf("%d/%s\n", rc, jf_strerror(rc));
return 1,
}
rc = jf_file_write(&jf2, file2_data2, strlen(file2_data2),
&write);
if (JF_RC_OK !=rc) {
printf("%d/%s\n", rc, jf_strerror(rc));
return 1;
}
rc = jf_journal_commit(&j);
if (JF_RC_OK !=rc) {
printf("%d/%s\n", rc, jf_strerror(rc));
return 1;

}

rc = jf_file_close(&jfl);

if (JF_RC_OK !=rc) {
printf("%d/%s\n", rc, jf_strerror(rc));
return 1,

}

rc = jf_file_close(&jf2);

if (JF_RC_OK !=rc) {
printf("%d/%s\n", rc, jf_strerror(rc));
return 1;

}

rc = jf_journal_close(&j);

if (JF_RC_OK != rc) {
printf("%d/%s\n", rc, jf_strerror(rc));
return 1;

Chapter 3. libjf basics

20

Chapter 3. libjf basics

83 printf("two_files program ended OKN\n");
84 return O;
85 }

two_files.c code explanation

Row 1

to use libjf a program must include at leifsfile.h header file

Row 6
declare objecit of type jf_journal_tj is a “journal object”
Row 7

declare objecjfl ,jf2 oftype jf_file_t:jfl andjf2 are a “journaled file objects”

Row 8

declare a struct will be used to store options related to journal

Row 9

declare a struct will be used to store options related to journaled files

Row 14

set default value for options related to journal

Rows 15-16

add some flags to journal related options: the journal must be created and the journal must not exist

Row 17

open the journal filgf_tut foo-journal and associate it to journal objgctthe journal will
handle 2 journaled files and use options specified by sjwpist

Row 18

check previous operation return code: print the return code and its human readable description if
something goes wrong

Row 22

set default value for options related to journaled files

Row 23

specify the journaled file must “join the journal”; joining a journal means the journal will store all
transactional information about the journaled file

21

Chapter 3. libjf basics

Row 24

open journaled filgf_tut_foo-datal , associate to objegftt , use journa] , data will be written
(“w”) and additional options must be picked-up frdapts

Row 29

open journaled filgf_tut_foo-data2 , associate to objeif® , use journa| , data will be written
(“w") and additional options must be picked-up frdapts

Row 34

write stringfilel_datal to journaled filgfl

Row 40

write stringfile2_datal to journaled filgf2

Row 46

back out all the changes operated on all the journaled files managed by journaj object

Row 51

write stringfilel_data? to journaled filgfl

Row 57

write stringfile2_data2 to journaled filgf2

Row 63

commit all the changes operated on all the journaled files managed by journaljobject

Row 68

close journaled filgf1

Row 73

close journaled filgf2

Row 78

close journaj

3.1.1. two_files.c compile and run

To compiletwo_files.c you may use thifibtool command:
libtool --mode=link gcc -Wall -l/opt/libjf/include -L/opt/libjf/lib \

-lif -0 two_files two_files.c

runtwo_filesprogram:

22

Chapter 3. libjf basics

tiian@linux:~/tutorial> ./two_files
two_files program ended OK!

take a look to the files produced by two_files execution:

tian@linux:~/tutorial> Is -la jf_tut_foo*

-rw-r--r-- 1 tiian users 29 2005-08-11 16:50 jf tut_foo-datal
-rw-r--r-- 1 tiian users 30 2005-08-11 16:50 jf tut_foo-data2
-rw-r--r-- 1 tiian users 16607 2005-08-11 16:50 jf tut foo-journal

inspect first and second journaled file:
tian@linux:~/tutorial> cat jf_tut_foo-datal
Second string for first file

tian@linux:~/tutorial> cat jf_tut_foo-data2
Second string for second file

take a look to journal content with command

tian@linux:~/tutorial> jf_report -j jf_tut foo-journal -dt

the first strings, on all journaled files, were backed oujf Ggurnal_rollback at line 46; the
second strings, on all journaled files, were committegf hyurnal_commit at line 63.
3.1.2. two_files.c interesting aspects

You should note these aspectsvm_files.c source code:

- inlibjf API some data types are not “typedefed” and they must be used with the explicit reserved word
“struct” (rows 8-9); this is a desired behavior because some structs should not be interpreted as
“classes”. This simple rule can help you understanding the idea:

. “classes” are types with name terminating in “_t” and methods to create/destroy/manage: you must
not access “properties” of an object with “methods” (functions) out of the scope of the “class”

. “structs” are commodity data aggregation with name terminating in “_s” and no methods to
manipulate them: you have to set the values of the interesting fields when necessary

« it's a good programming practice to close journaled files before closing journal: leaving objects in
open status will cause a useless, time consuming, automatic recovery at next open time; forgetting
object closure may lead to memory leak bugs.

The illustrated schema is really simple: two global transactions on two journaled files, first transaction
was backed out, second transaction was committed.

What happens in the event of an application crash?

23

Chapter 3. libjf basics

3.2. Two journaled files and an application crash

A simple way to simulate an application crash is forcing a division by zero exception: this may not be the
cause of the crash of your application once it has been moved to production environment, but it's an
example can light on libjf power.

Example 3-2.two_files_crash.c

1 #include <jf_file.h >

2 int main()

34

4 int rc;

5 size_t write;

6 jf_journal_t j;

7 jf_file_t jf1, jf2;

8 struct jf_journal_opts_s jopts;

9 struct jf file_open_opts_s fopts;

10 const char *filel_datal = "First string for first file\n";
11 const char *filel_data2 = "Second string for first file\n";
12 const char *file2_datal = "First string for second file\n";
13 const char *file2_data2 = "Second string for second file\n";
14 int x, y;

15 jf_set_default_journal_opts(&jopts);

16 jopts.flags |= JF_JOURNAL_PROP_OPEN_O_CREAT |
17 JF_JOURNAL_PROP_OPEN_O_EXCL;

18 rc = jf_journal_open(&j, "jf _tut_foo-journal", 2, &jopts);
19 if (JF_RC_OK !=rc) {

20 printf("%d/%s\n", rc, jf_strerror(rc));

21 return 1;

22 }

23 jf_set_default_file_open_opts(&fopts);

24 fopts.join_the_journal = TRUE;

25 rc = jf_file_open(&jfl, &, "jf_tut_foo-datal”, "w", &fopts);
26 if (JF_RC_OK != rc) {

27 printf("%d/%s\n", rc, jf_strerror(rc));

28 return 1;

29 }

30 rc = jf_file_open(&jf2, &j, "jf_tut_foo-data2", "w", &fopts);
31 if (JF_RC_OK !=rc) {

32 printf("%d/%s\n", rc, jf_strerror(rc));

33 return 1;

34 }

35 rc = jf_file_write(&jfl, filel_datal, strlen(filel_datal),

36 &write);

37 if (JF_RC_OK !=rc) {

38 printf("%d/%s\n", rc, jf_strerror(rc));

39 return 1;

24

40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

69
70
71
72
73
74
75
76
77
78

79
80
81
82
83

84
85
86 }

}
rc = jf_file_write(&f2, file2_datal, strlen(file2_datal),
&write);

if (JF_RC_OK !=rc) {
printf("%d/%s\n", rc, jf_strerror(rc));
return 1,

}

rc = jf_journal_commit(&j);

if (JF_RC_OK !=rc) {
printf("%d/%s\n", rc, jf_strerror(rc));
return 1;

}

rc = jf_file_write(&jfl, filel_data2, strlen(filel_data2),
&write);
if (JF_RC_OK !=rc) {
printf("%d/%s\n", rc, jf_strerror(rc));
return 1;
}
rc = jf_file_write(&jf2, file2_data2, strlen(file2_data2),
&write);
if (JF_RC_OK != rc) {
printf("%d/%s\n", rc, jf_strerror(rc));
return 1;
}
/* a fool crash simulation */
x =0y =5
while (TRUE)
X += 5/ y-;
printf("This should not print x = %d\n", Xx);

rc = jf_file_close(&jfl);

if (JF_RC_OK !=rc) {
printf("%d/%s\n", rc, jf_strerror(rc));
return 1,

}

rc = jf_file_close(&jf2);

if (JF_RC_OK !=rc) {
printf("%d/%s\n", rc, jf_strerror(rc));
return 1;

}

rc = jf_journal_close(&));

if (JF_RC_OK !=rc) {
printf("%d/%s\n", rc, jf_strerror(rc));
return 1;

}

printf("two_files_crash program ended OKN\n");
return O;

Chapter 3. libjf basics

25

Chapter 3. libjf basics

two_files_crash.c is slightly different than two_files.c

Row 47

a first commit is performed by our application to successfully close the first transaction

Rows 64-68

a trick has been introduced to force a “division by zero” exception (row 67) avoiding the situation is
detected by most compilers.

To compiletwo_files_crash.c source code use our old friefidtool command:

libtool --mode=link gcc -Wall -l/opt/libjf/include -L/opt/libjf/lib -ljf \
-0 two_files_crash two_files_crash.c

if you executedwo_filesprogram too, the execution ofo_files_crashshould exploit an error
condition:

tian@linux:~/tutorial> ./two_files_crash
-15/ERROR: file can not be created because it already exists

the problem is due ttwo_files_crashrequest of “new journal creation” (take a look at row 16); remove
old files and run it again:

tian@linux:~/tutorial> rm jf_tut_foo-*
tian@linux:~/tutorial> ./two_files_crash
Floating point exception

our application crashed as expected, look at journaled files:

tian@linux:~/tutorial> Is -la jf_tut_foo-*

-rw-r--r-- 1 tiian users 28 2005-08-11 17:34 jf tut_foo-datal
-rw-r--r-- 1 tiian users 29 2005-08-11 17:34 jf_tut_foo-data2
-rw-r--r-- 1 tiian users 16605 2005-08-11 17:34 jf tut_foo-journal
tiian@linux:~/tutorial> cat jf_tut foo-datal

First string for first file

tian@linux:~/tutorial> cat jf_tut_foo-data2

First string for second file

strings of first transaction are at their place as desired, strings of second transaction were backed out as
expected and data kept by journaled files are consistent.

You may enjoy transactionality of this example moving rows 64-68 in different places like between rows
40 and 41.

26

Chapter 3. libjf basics

3.3. Two journaled files and a partial transaction

When you are working with two or more journaled files, sometimes you need to close a “partial
transaction” before the global transaction has completed: this happens when you want to save the fact
you tried the transaction and a rollback would erase this information. The following example will show
this behavior.

Example 3-3.two_files_crash2.c

1 #include <jf_file.h >

2 int main()

34

4 int rc;

5 size_t write;

6 jf_journal_t j;

7 jf_file_t jf1, jf2;

8 struct jf_journal_opts_s jopts;

9 struct jf_file_open_opts_s fopts;

10 const char *filel_datal = "First string for first file\n";
11 const char *filel_data2 = "Second string for first file\n";
12 const char *file2_datal = "First string for second file\n";
13 const char *file2_data2 = "Second string for second file\n";
14 int x, vy;

15 jf_set_default_journal_opts(&jopts);

16 jopts.flags |= JF_JOURNAL_PROP_OPEN_O_CREAT |
17 JF_JOURNAL_PROP_OPEN_O_EXCL;

18 rc = jf_journal_open(&j, "jf_tut_foo-journal", 2, &jopts);
19 if (JF_RC_OK !=rc) {

20 printf("%d/%s\n", rc, jf_strerror(rc));

21 return 1;

22 }

23 jf_set_default_file_open_opts(&fopts);

24 fopts.join_the_journal = TRUE;

25 rc = jf_file_open(&jfl, &j, "jf_tut_foo-datal”, "w", &fopts);
26 if (JF_RC_OK != rc) {

27 printf("%d/%s\n", rc, jf_strerror(rc));

28 return 1;

29 }

30 rc = jf_file_open(&jf2, &j, "jf_tut_foo-data2", "w", &fopts);
31 if (JF_RC_OK !=rc) {

32 printf("%d/%s\n", rc, jf_strerror(rc));

33 return 1;

34 }

35 rc = jf_file_write(&jfl, filel_datal, strlen(filel_datal),

36 &write);

37 if (JF_RC_OK !=rc) {

38 printf("%d/%s\n", rc, jf_strerror(rc));

27

39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

69
70
71
72
73
74
75
76
1
78

79
80
81
82
83

84
85
86 }

return 1;

}

rc = jf_file_write(&jf2, file2_datal, strlen(file2_datal),

&write);

if (JF_RC_OK !=rc) {
printf("%d/%s\n", rc, jf_strerror(rc));
return 1;

}

rc = jf_file_commit(&jf2);

if (JF_RC_OK !=rc) {
printf("%d/%s\n", rc, jf_strerror(rc));
return 1;

}

rc = jf_file_write(&jfl, filel_data2, strlen(filel_data2),
&write);
if (JF_RC_OK !=rc) {
printf("%d/%s\n", rc, jf_strerror(rc));
return 1,
}
rc = jf_file_write(&jf2, file2_data2, strlen(file2_data2),
&write);
if (JF_RC_OK !=rc) {
printf("%d/%s\n", rc, jf_strerror(rc));
return 1;
}
/* a fool crash simulation */
X =0y =5
while (TRUE)
X += 5/ y-
printf("This should not print x = %d\n", x);

rc = jf_file_close(&jfl);

if (JF_RC_OK !=rc) {
printf("%d/%s\n", rc, jf_strerror(rc));
return 1;

}

rc = jf_file_close(&jf2);

if (JF_RC_OK !=rc) {
printf("%d/%s\n", rc, jf_strerror(rc));
return 1;

}

rc = jf_journal_close(&j);

if (JF_RC_OK !=rc) {
printf("%d/%s\n", rc, jf_strerror(rc));
return 1;

}

printf("two_files_crash Il program ended OKN\n");
return O;

Chapter 3. libjf basics

28

Chapter 3. libjf basics

At row 47, we changefl_journal_commit(& j) with jf_file_commit(& jf2) :instead of
committing the whole “unit of work”, we decided to commit only the changes operated against

The sourcewo_files_crash2.c can be compiled with this command:

libtool --mode=link gcc -Wall -l/opt/libjf/include -L/opt/libjf/lib -Ijf \
-0 two_files_crash2 two_files_crash2.c

execute it after you have deleted journal and journaled files creattuddbyiles_crash

tian@linux:~/tutorial> rm jf_tut foo-*
tiian@linux:~/tutorial> ./two_files_crash2
Floating point exception

take a look to files produced liwo_files_crash2

tian@linux:~/tutorial> Is -la jf_tut_foo-*

-rw-r--r-- 1 tiian users 0 2005-08-12 22:37 jf_tut_foo-datal
-rw-r--r-- 1 tiian users 29 2005-08-12 22:37 jf_tut_foo-data2
-rw-r--r-- 1 tiian users 16561 2005-08-12 22:37 jf tut_foo-journal
tian@linux:~/tutorial> cat jf_tut_foo-data2

First string for second file

first journaled file is empty because no data has been committed to it, second journaled file contains the
first string because a partial commit has been performed.

Can libjf commit/rollback a random set of journaled files? At the time of this writing, libjf can
commit/rollback only:

- all the journaled files associated to a journal
« aspecific journaled file

In the future a partial commit/rollback could be implemented: it requires a partial rewrite of some core
functions, but the design of libjf and the actual implementation do not obstacle this interesting feature.

3.4. The recovery pending status

What happens when an application or the whole operating system crashes?

After a crash, a journal and some of its journaled files, may be in “recovery pending” status: the journal
contains all the necessary information to fix journaled files, but journaled files content may be
consistent.

29

Chapter 3. libjf basics

The previous examples are trivial and inconsistency does not happen, but... please remove previous
journal and journaled files, and execute agaio_files_crashprogram:

tian@linux:~/tutorial> rm jf_tut_foo-*
tian@linux:~/tutorial> ./two_files_crash
Floating point exception

Now execute the utility prograiji_recover specifying “test mode” and check the return code:

tian@linux:~/tutorial> jf _recover -j jf_tut_foo-journal -t
tiian@linux:~/tutorial> echo $?
0

please take a look to on-line help:

tian@linux:~/tutorial> jf _recover -h
Usage: jf_recover -j JOURNALFILENAME [-t [-d{n|h|t|f}] 1 [-f]
Recover all files journaled by JOURNALFILENAME

-j : specify the name of the journal file must be host FILE
-t : test only mode, useful to understand if recovery is necessary
exit code values:
- recovery is necessary
- forced recovery is necessary
- an error happened
3 - recovery is not necessary
-d : specifies which data must be dumped to output (test only mode)
-dn no data are dumped (essential dump)
-dh hexadecimal format data dump
-dt text format data dump
-df full (hexadecimal and text) data dump
-f . forced recovery mode, useful to recover a damaged journal;
use only as a LAST resource
-h : print this help

N = O

as the help explain, if “0” is returned, a recovery is necessary: this is exactly what we expect because the

application crashed and libjf is part of the application, so libjf crashed with the application and the
journaled files needs a recovery phase. To discover which operations will be perforijfiecbyver,

try:

tian@linux:~/tutorial> jf_recover -j jf_tut_foo-journal -t -dt

<?xml version="1.0" encoding="UTF-8"? >

<recovery_report >
<rotation_recovery >false </rotation_recovery >
<journal_real_path >ijf_tut_foo-journal <ljournal_real_path >
<analyze_damaged_journal >false </analyze_damaged_journal >
<journal_last_pos >16512 </journal_last_pos >
<damaged_journal >false </damaged_journal >
<recovery_pending_status >true </recovery_pending_status >
<patches >

30

Chapter 3. libjf basics

<patch type="redo" >

<append jrn_rec_off="16512" file_id="1" size='28" offset="0’ >
<data type='redo’ format="text’ >First string for first file </data >
<lappend >
</patch >
</patches >
<new_journal_last_pos >28</new_journal_last_pos >
<patches >
<patch type="redo" >
<append jrn_rec_off="16556" file_id="2" size="29" offset="0’ >
<data type='redo’ format="text’ >First string for second file </data >
<lappend >
<Ipatch >
<Ipatches >
<new_journal_last_pos >29</new_journal_last_pos >
<write_rollback_record/ >
<Irecovery_report >

jf_recover discovered two patches must be applied to journaled files and a rollback record must be
written on journal: so we have just discovered ours journaled files incidentally are OK, but application
crashed before libjf was able to mark the “no recovery pending status” (this behavior is the consequence
of some optimizations: if you sync your files at every step, the resulting system becomes unusable).

OK, we discovered our journal is in “recovery pending” and the operations will be performed, do them
and check the status a second time:

tian@linux:~/tutorial> jf recover -j jf tut_foo-journal
tian@linux:~/tutorial> jf_recover -j jf_tut_foo-journal -t
tiian@linux:~/tutorial> echo $?

3

Now journal is not in “recovery pending” status and data in journaled files can be safely accessed by any
application, for example a utility command likat or more...

Why jf_recover returns “0”, “OK” code, if the journal is in “recovery pending” status? There are two
reasons:

- jf_recover executed in “test mode” has to check for “recovery pending” status, so “0”, means “OK,
recovery pending is TRUE”

« you can concatenajt recover in a shell script using the compact form “&&”:

jf_recover -j <journal_name > -t -df && jf_recover -j <journal_name >

a recovery phase is performed only if the journal is in “recovery pending status”.

31

Chapter 3. libjf basics

3.4.1. Automatic recovery

Can an application open a journal in “recovery pending” status without a previous execution of utility
programjf_recover?

Yes, but it’s not the default behavior because recovery is a potential dangerous operation and | think it’s
not a good thing someone takes a decision without asking you!

The booleamecovery_enabled field of jf_journal_opts_s struct, passedftgournal_open

method, must be set TRUEIf you want automatic cold recovery feature active; the boolean field
recovery_damaged_journal does the same when the journal is damaged: pay attention a
damaged journal is a very serious situation will probably lead to data corruption (do you have a backup
of your files?!).

“libjf API reference guide” documents all the available options.

3.5. Text files

In UNIX derived systems there is no difference between text files and binary files, but in DOS derived
systems like Microsoft Windows this is not true: “new line” code is translated to the two characters
sequence “carriage return” “line feed”; Mac OS use a single but different code to represent “newline”
concept.

POSIX I/0 does not afford the issue because the API does not provide string related functions: the
programs have to deal with “binary buffers” and these sort of issues are considered “application side
problems”.

C standard I/O tried to mask the issue adopting the concept: program does not know the internals of the
operating system and “newline” is transparently encoded/decoded by standard 1/O library. This approach
is very elegant but there’s a subtle problem: when a text file is moved from a UNIX style system to a
DOS style one, the file must be “translated”. In the file transfer world, this was not an issue, of course: all
the data mover since FTP age perform the “newline” translation. In the data sharing age the solution is
not so easy: imagine a GNU/Linux system serving UNIX systems through NFS and Windows systems
through SAMBA. With a bit of imagination you may think a multi platform application running on

UNIX and Windows... what happens with “text” files? Which “standard” should be adopted?

« If “UNIX standard” is adopted, Windows applications have to use the file as “binary” and provide an
application side “in flight” translation of newline.

- If“DOS standard” is adopted, the opposite issue must be solved at application level.

The elegant solution seems to be bugged when files are shared among UNIX, Windows, Mac, etc...

32

Chapter 3. libjf basics

At the time of this writing libjf does not provide a “transparent” dealing of newline dilemma: instead of
opening a “text” journaled file, an application can choose to open a “DOS text journaled file” appending
a “D” to “open mode”.

Example 3-4.dos_text.c

1 #include %lt;jf_file.h >

2 int main()

3

4 int rc;

5 jf_file_t jf;

6 size_t write;

7 rc = jf_file_open(&jf, NULL, "jf tut_foo", "wD", NULL);
8 if (JF_RC_OK != rc)

9 return 1;

10 rc = jf_file_printf(&jf, &write, "%s", "Hello world\n");
11 if (JF_RC_OK != rc)

12 return 1;

13 rc = jf_file_commit(&jf);

14 if (JF_RC_OK != rc)

15 return 1;

16 rc = jf_file_close(&jf);

17 if (JF_RC_OK != rc)

18 return 1;

19 printf("DOS text program is OKN\n");
20 return O;

21}

dos_text.c source code can be compiled with this command:

libtool --mode=link gcc -Wall -l/opt/libjf/include -L/opt/libjf/lib -Ijf \
-0 dos_text dos_text.c

execute it and verify the produced journaled file:

tian@linux:~/tutorial> ./dos_text

DOS text program is OK!

tian@linux:~/tutorial> od -cx jf_tut_foo

0000000 H e I | o] w o] r | d ''\r \n
6548 6¢6¢ 206f 6f77 6¢72 2164 0ald

0000016

33

Chapter 3. libjf basics

you can note the produced journaled file is very likely the journaled file produckdllmy world
program, but the newline sequence is now encoded following as “DOS standard” (carriage return, line
feed).

3.5.1. Conclusions
« hello_world program writes UNIX text journaled files independently from the operating system used
to compile and run it

- dos_textprogram writes DOS text journaled files independently from the operating system used to
compile and run it

- if you do not like this “strange” behavior, simply use libjf in binary mode, like you are used with
POSIX I/O.

3.5.2. Future developments

1. What about MAC OS X?

Unfortunately | don’t have it: when the port will be performed, this issue should be solved; | suppose a
new “open mode” flag might be introduced, for example “M”, to specify a “MAC OS text journaled file”.
2. Will a “transparent flag” be provided in the future?

| don't think a transparent flag like “T” (text) is useful because it’s a bit confusing: think to an

application compiled as Microsoft Windows native and as Cygwin emulation... When executed as native
it should adopt DOS standard, but when executed as a cygwin application it should adopt UNIX
standard... Who's taking care about user’s mind? | know | cannot change the world, so if a lot of people
asked for it, it would be developed.

3.6. Restartable reads

An interesting libjf feature is the “restartable read” concept: many times a program has to process some
input files to produce output files. What happens when an error occur processing a specific input record?
If the program crashed the first time, there’s more than a chance it will crash twice or more when trying
to process the “dirty record”... Take a look to this example program:

Example 3-5.restartable_reads.c

1 #include <jf_file.h >

2
3
4 int rc, c;
5 jf_file_t jf;

34

Chapter 3. libjf basics

6 rc = jf_file_open(&jf, NULL, "jf tut_foo", "R", NULL);

7 if (JF_RC_OK != rc)

8 return 1;

9 if (jf_file_eof(&jf)) {

10 rc = jf_file_rewind(&jf);

11 if (JF_RC_OK != rc)

12 return 1;

13 } I+ if (if_file_eof(&jf)) */

14 rc = jf_file_getc(&jf, &c);

15 if (JF_RC_OK != rc)

16 return 1;

17 printf("Read char '%c’ (0x%x)\n", ¢, c);

18 rc = jf_file_commit(&jf);

19 if (JF_RC_OK != rc)

20 return 1;

21 rc = jf_file_close(&jf);

22 if (JF_RC_OK != rc)

23 return 1;

24 printf("Restartable reads program is OK\n");

25 return O;

26 }
restartable_reads.c code explanation
Row 6

the special flag “R” is used at open time: as documented in “API reference guide”, the stream is
positioned at last committed position

Row 9

check is the file pointer is at “end of file” position

Row 10

move file pointer to first file positiont_file_seek might be used instead {if file_rewind
if you preferred

Row 14

fetch only one char from journaled file

35

Chapter 3. libjf basics

3.6.1. Compilation and execution

You may use this command to compitsstartable_reads.c source code:

libtool --mode=link gcc -Wall -l/opt/libjf/include -L/opt/libjf/lib -Ijf \
-0 restartable_reads restartable reads.c

restartable_readsprogram needs a not emgtytut_foo journaled file to be executed; our old friend
hello_world can help us one more time:

tian@linux:~/tutorial> ./hello_world
Hello world program is OK!
tian@linux:~/tutorial> ./restartable_reads
Read char 'H (0x48)

Restartable reads program is OK!

restartable_readsprogram fetched “H”, the first char in journaled fifetut foo . What happens if
we runrestartable_readsagain?

tian@linux:~/tutorial> ./restartable_reads

Read char 'e’ (0x65)
Restartable reads program is OK!

“e”, the second char in journaled fite tut_foo is fetched... Are you guessing what will happen at
next execution?

tian@linux:~/tutorial> ./restartable_reads
Read char 'I' (0x6c)
Restartable reads program is OKI

“I", the third char in journaled file is fetched!

The same behavior will happen when using a different read method lilke gets or
jf_file_read . at commit time, the file pointer is moved and transactionally kept by journal.

3.6.2. Restartable reads and rollback

What happens when a restartable read transaction is backed out by an explicit or implicit rollback? Take
a look to this example:

Example 3-6.restartable_reads_rollback.c

1 #include <jf_file.h >

2 int main()

36

Chapter 3. libjf basics

34

4 int rc, c;

5 jf_file_t jf;

6 rc = jf_file_open(&jf, NULL, "jf tut foo", "R", NULL);

7 if (JF_RC_OK != rc)

8 return 1;

9 if (jif_file_eof(&jf)) {

10 rc = jf_file_rewind(&jf);

11 if (JF_RC_OK != rc)

12 return 1;

13 } it (if_file_eof(&jf)) */

14 rc = jf_file_getc(&jf, &c);

15 if (JF_RC_OK != rc)

16 return 1;

17 printf("Read char '%c’ (0x%x)\n", ¢, c);

18 rc = jf_file_rollback(&jf);

19 if (JF_RC_OK != rc)

20 return 1;

21 rc = jf_file_close(&jf);

22 if (JF_RC_OK != rc)

23 return 1;

24 printf("Restartable reads rollback program is OKN\n");

25 return O;

26 }
The only difference betweeanstartable_reads.c andrestartable_reads_rollback.c is at
row 18 whergf_file_commit has been replaced withfile_rollback

Compile and run this example:

libtool --mode=link gcc -Wall -l/opt/libjf/include -L/opt/libjf/lib -ljf \
-0 restartable_reads_rollback restartable_reads_rollback.c

tiian@Ilinux:~/tutorial> ./hello_world

Hello world program is OK!

tian@linux:~/tutorial> ./restartable_reads_rollback

Read char 'H’ (0x48)

Restartable reads rollback program is OK!

tian@linux:~/tutorial> ./restartable_reads_rollback

Read char 'H' (0x48)

Restartable reads rollback program is OK!

tian@linux:~/tutorial> ./restartable_reads_rollback

Read char 'H' (0x48)

Restartable reads rollback program is OK!

37

Chapter 3. libjf basics

Every execution reads the first char because the read transaction is not committed. Now you can play
some minutes with “restartable_reads” and “restartable_reads_rollback” to simulate committed and
backed out transactions.

3.6.3. Conclusions

Using libjf you are able to write restartable applications:

- you don't have to deal with saving in some “safe place” the last read record to avoid multiple
processing

« using partial transactions, you can commit a read before the global transaction commit and avoid a
crash generated by dirty input at next restart

3.7. Other “open mode” options

It's strongly suggested to take a lookjtdfile_open page in libjf “API reference guide” because
some more “open mode” flags are explained: you will find “append” and “read/write” combined flags as
used with C standard /O library. Trying it is a straightforward programming exercise.

38

Chapter 4. Diving into libjf

In the previous chapters we discussed about transactions and recovery but we didn’t afford the argument
of data synchronization we announced in introduction. It's time to discover this intriguing land.

4.1. Synchronization type

Rule number oneavery operating system has some differences when dealing with data synchronization.
libjf should be portable across many environments and it’s difficult to take benefit of some specific
operating system related features when the software must be portable.

Rule number twodocumentation from standards are very weak; just to figure out what “very weak”
means, take a look to documentation available in IEEE std. 1003-2001

libjf supply two type of synchronization: “fast” and “safe”.

4.1.1. libjf fast synchronization

This type of synchronization prevent data loss in case of application crash and does not supply any
warranty in case of system crash.

Fast synchronization usétush function to flush buffer content to operating system: in the event of
application crash, operating system closes all open file descriptors and queues pending data for writing.
If the application crashed its data would be saved by operating system.

4.1.2. libjf safe synchronization
This type of synchronization prevent data loss in case of system crash.

Safe synchronization uségatasync (fsync when the previous is not available) function to sync
device content.

39

Chapter 4. Diving into libjf

4.1.3. How can an application choose the type of
synchronization?

An application may hard code the type of synchronization specifying flag
JF_JOURNAL_PROP_SYNC_SARE JF_JOURNAL_PROP_SYNC_FASttjf_journal_open time:

jf_journal_t j;
struct jf_journal_opts_s jopts;

jf_set_default_journal_opts(&jopts);
jopts.flags |= JF_JOURNAL_PROP_SYNC_SAFE;
rc = jf_journal_open(&j, "jf_tut_foo-journal’, 2, &jopts);

this method has all the benefits and the disadvantages of “hard wired” parameters. libjf allows you to
specify the type of synchronization at run time: this is the default behavior, but you may ask for it by
your own:

jf_journal_t j;
struct jf_journal_opts_s jopts;

jf_set_default_journal_opts(&jopts);

jopts.flags |= JF_JOURNAL_PROP_SYNC_ENV_VAR;
rc = jf_journal_open(&j, "jf_tut_foo-journal”, 2, &jopts);

an application that use_JOURNAL_PROP_SYNC_ENV_VARarches for environment variable
JF_JOURNAL_SYNC_TYPID establish the type of synchronization must be used:

- environment variable is defined and its value is “falstsynchronization is adopted
« environment variable is defined and its value is “d4fesynchronization is adopted

« else:JF_JOURNAL_PROP_SYNC_SUGGEST&Mchronization is adopted (take a look to “API
reference guide”)

4.1.4. Playing with synchronization type

Showing the effects of different synchronization type is a hard job out of the scope of this tutorial, but an
example to empirically verify the performance gap is easy to build.
Example 4-1.many_hello_world.c

1 #include <jf_file.h >

2 int main()
3 {

40

Chapter 4. Diving into libjf

4 int rc, i;
5 jf_file_t jf;
6 size_t write;
7 rc = jf_file_open(&jf, NULL, "jf tut foo", "w", NULL);
8 if (JF_RC_OK != rc)
9 return 1;
10 for (i = 0; i < 10000; ++i) {
11 rc = jf_file_printf(&jf, &write, "%s",
12 "Hello world\n");
13 if (JF_RC_OK != rc)
14 return 1;
15 rc = jf_file_commit(&jf);
16 if (JF_RC_OK != rc)
17 return 1;
18 Y} Ffor (i =0; i < 10000; ++i) */
19 rc = jf_file_close(&jf);
20 if (JF_RC_OK != rc)
21 return 1;
22 printf("Many hello world program is OKN\n");
23 return O;
24 }
many_hello_world.c is like hello_world.c but it performs 10000 transactions instead of only 1.

We do not specifyF_ JOURNAL_PROP_SYNC_ENV_VARcause it's the default option. To compile
many_hello_world.c you can use this command:

libtool --mode=link gcc -Wall -l/opt/libjf/include -L/opt/libjf/lib -ljf \
-0 many_hello_world many_hello_world.c

execute it:

tian@linux:~/tutorial> rm jf_tut_foo*

tian@linux:~/tutorial> export JF_JOURNAL_SYNC_TYPE=0
tian@linux:~/tutorial> time ./many_hello_world

Many hello world program is OK!

real 0m0.499s
user 0m0.149s
Sys 0mO0.345s

tian@linux:~/tutorial> rm jf_tut_foo*

tiian@linux:~/tutorial> export JF_JOURNAL_SYNC_TYPE=1
tian@linux:~/tutorial> time ./many_hello_world

Many hello world program is OK!

41

Chapter 4. Diving into libjf

real 0m3.478s
user 0m0.130s
Sys 0m0.390s

tian@linux:~/tutorial> rm jf_tut_foo*
tian@linux:~/tutorial> unset JF_JOURNAL_SYNC_TYPE
tian@linux:~/tutorial> time ./many_hello_world

Many hello world program is OK!

real 0m0.507s
user 0m0.173s
Sys 0m0.331s

second execution take 7 times the first; third execution is very like the first: this means current value of
JF_JOURNAL_PROP_SYNC_SUGGESTEDF_JOURNAL_PROP_SYNC_FASIUt in the future it might
be changed. To check the journaled files contains 10000 rows issue this command:

tian@linux:~/tutorial> wc -l jf_tut_foo

10000 jf_tut_foo

To check journal contains 10000 commits issue this command:
tian@linux:~/tutorial> jf_report -j jf_tut_foo.jf | grep commit | wc -

10000

Please pay attentiamany_hello_worldis nota benchmark program! To measure libjf performances,
utility programijf_bench is supplied, but this is another tale.

4.1.5. How is synchronization tested?

To test synchronization, crashes must be reproduced. Application crash is easy to simulate: a division by
zero exception, a segmentation fault exception, etc... Simulating a system crash is a much difficult task; a
realistic simulation is probably an impossible task without hacking the operating system kernel. Despite
this fact, some types of test must be performed against a “journaled files library”...

libjf implements a “crash simulation feature” used to stress the library with crashes in all the interesting
code steps: this simulation should be sufficiently closed to a real crash to declare “libjf should be a safe
journaling tools”. Nothing is engraved in the stone and some stuff might be changed in the future.

4.2. Journaling and caching

Designing a super safe journaling tool without keeping in consideration the performance point of view is
a useless academic exercise: no one would use a very slow “safe journaling tool” instead of standard 1/O

42

Chapter 4. Diving into libjf

libraries. libjf is not already optimized and a lot of code review, in the future, would be probably increase
performances, but from an architectural point of view, the library adopt some strategies to limit
performance degradation when compared with standard I/O libraries.

The most important feature is a high level cache we can explain with few words: every time the
application updates a journaled file, the change is not propagated to the underlining file, but simply kept
in the cache managed by libjf. Data are copied to file when cache reaches maximum size or a commit is
requested by application. If the cache is large enough, no underlining file is touched until commit point
and, in case of rollback, no file is touched at all. Managing a new level of cache is expensive in terms of
CPU and virtual memory, but updating files before commit or rollback dramatically increases elapsed
times because every time a bit is touched, its undo record must have been saved and synchronized in a
safe place (call it “journal”, “log” or “rollback tablespace” does not alter the concept).

If libjf was kernel stuff at filesystem level, its performances would be closer to native file access
operations, but a lot of big issues should be solved:

« GNUJ/Linux has 4 different “official” filesystems: ext3 (and ext2), reiser, xfs, jfs and libjf should have
4 different implementations only for GNU/Linux

- proprietary UNIX are not so easy to hack: there might be problems related to licenses; some
proprietary UNIX does not supply kernel source code and a modification would be quite impossible

« not to mention the Microsoft Windows operating system families...

The efficient kernel level implementation of libjf would not exist and we are not discussing about libjf...

The maximum size of cache allocated for every journaled file can be specified setting the field
cache_size limit of struct jf_journal_opts_s of struct jf_file_open_opts_s. Take a look to this
sample program:

Example 4-2.cache_size.c

1 #include <jf_file.h >

2 int main()

3 {

4 int rc;

5 jf_journal_t j;

6 jf_file_t jfa, jf2, jf3;

7 struct jf_journal_opts_s jopts;

8 struct jf_file_open_opts_s fopts;

9 jf_set_default_journal_opts(&jopts);

10 jopts.flags |= JF_JOURNAL_PROP_OPEN_O_CREAT |
11 JF_JOURNAL_PROP_OPEN_O_EXCL,;

12 rc = jf_journal_open(&j, "jf_tut_foo-journal", 2, &jopts);
13 if (JF_RC_OK !=rc) {

14 printf("%d/%s\n", rc, jf_strerror(rc));

15 return 1;

16 }

43

17
18
19

20
21
22
23
24
25
26
27

28

29
30
31
32
33
34
35
36

37
38
39
40
41
42
43
44

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

Chapter 4. Diving into libjf

jf_set_default_file_open_opts(&fopts);
fopts.join_the_journal = TRUE;

fopts.journal_opts.journal_file_opts.cache_size_limit = 123400;

rc = jf_file_open(&jfl, &, "jf_tut_foo-datal”, "w", &fopts);
if (JF_RC_OK !=rc) {
printf("%d/%s\n", rc, jf_strerror(rc));
return 1;
}
printf("Cache limit for first journaled file: "
JF_OFFSET_T_FORMAT "\n",
jf_file_get_cache_limit(&jf1));

fopts.journal_opts.journal_file_opts.cache_size_limit = -1;

rc = jf_file_open(&jf2, &j, "jf_tut_foo-data2", "w", &fopts);
if (JF_RC_OK !=rc) {
printf("%d/%s\n", rc, jf_strerror(rc));
return 1,
}
printf("Cache limit for second journaled file: "
JF_OFFSET_T_FORMAT "\n",
jf_file_get_cache_limit(&jf2));

rc = jf_file_open(&jf3, NULL, "jf_tut foo-data3", "w", NULL);
if (JF_RC_OK !=rc) {
printf("%d/%s\n", rc, jf_strerror(rc));
return 1;
}
printf("Cache limit for third journaled file: "
JF_OFFSET_T_FORMAT "\n",
jf_file_get_cache_limit(&jf3));

rc = jf_file_close(&jf1);

if (JF_RC_OK !=rc) {
printf("%d/%s\n", rc, jf_strerror(rc));
return 1;

}

rc = jf_file_close(&jf2);

if (JF_RC_OK !=rc) {
printf("%d/%s\n", rc, jf_strerror(rc));
return 1,

}

rc = jf_file_close(&jf3);

if (JF_RC_OK !=rc) {
printf("%d/%s\n", rc, jf_strerror(rc));
return 1;

}

rc = jf_journal_close(&j);

if (JF_RC_OK !=rc) {
printf("%d/%s\n", rc, jf_strerror(rc));
return 1;

44

Chapter 4. Diving into libjf

65 printf("two_files program ended OKN\n");
66 return O;
67 }

cache_size.c source code explanation

Rows 19-20

set cache size to value 123400 bytes for journaledffile

Row 27

retrieve the size of cache associated to journalegffile

Rows 28-29

set cache size to default value for journaledjfite

Row 36

retrieve the size of cache associated to journalegfile

Row 37

open journaled filgf3 with default values

Row 44

retrieve the size of cache associated to journaledf3ile

4.2.1. Compilation and execution

To compilecache_sizgorogram you can use this command:

libtool --mode=link gcc -Wall -l/opt/libjf/include -L/opt/libjf/lib -ljf \
-0 cache_size cache_size.c

executed it:

tian@linux:~/src/tutorial> rm jf_tut_foo*

tiian@linux:~/src/tutorial> export JF_JOURNALED_FILE_CACHE_SIZE=765000
tiian@linux:~/src/tutorial> ./cache_size

Cache limit for first journaled file: 123400

Cache limit for second journaled file: 262144

Cache limit for third journaled file: 765000

two_files program ended OK!

tian@linux:~/src/tutorial> rm jf_tut_foo-*

45

Chapter 4. Diving into libjf

tiian@linux:~/src/tutorial> export JF_JOURNALED_FILE_CACHE_SIZE=437900
tiian@linux:~/src/tutorial> ./cache_size

Cache limit for first journaled file: 123400

Cache limit for second journaled file: 262144

Cache limit for third journaled file: 437900

two_files program ended OK!

« cache associated to first journaled file is 123400 bytes large and it's the same at first and second
execution because it's the value explicitly coded by the program

- cache associated to second journaled file is 262144 bytes large and it's the same at first and second
execution because it’s tlefaultvalue

- cache associated to third journaled file varies according to the value of
JF_JOURNALED_FILE_CACHE_SIZE the same behavior can be obtained avoiding explicit setting of
cache_size_limit in jf_file_open_opts_s struct.

4.2.2. How cache size limit can be tuned

After you developed your application you can try to expand the cache size limit and measure elapsed
times: only if the performance improves significantly the cache size expansion is suggested. For most
applications, default value should be fine.

Note: the parameter has the meaning of “cache size limit”: only necessary memory are allocated by
the application.

4.3. libjf object options

In the previous sections we inspected some options can be set when opening a journal and/or a journaled
file. To get the complete up-to-date list of available options, please refer to “API reference guide”. The
following table is a summary of the structs used to pass options to create/open methods:

Table 4-1. Create/open methods struct summary

Method Struct Sub-struct Sub-sub-struct
jf_journal_open jf_journal_opts_s jf_journal_file_opts_s
jf_file_open jf_file_open_opts_s jf_journal_opts_s jf_journal_file_opts_s

46

Chapter 4. Diving into libjf

These option structs are passed by reference, but the content is not changed because they are read only
arguments of open methods.

47

Chapter 5. Utility programs

libjf is not only alibrary (static and or shared), but a complete tool to develop and manage journaled
applications. As seen in the previous chapter, some utility programs are supplied to help in journal
management.

5.1. jf create: journal creation

If you have to create a journal without writing your own “hello world derived application”, you can use
utility programijf_create. This is a usage example:

tiian@linux:~/tutorial > jf_create -j jf_tut foo-journal -n 5
tiian@linux:~/tutorial > Is -la jf_tut_foo-journal

-rw-r--r-- 1 tiian users 8278 2005-08-29 22:12 jf tut_foo-journal
tiian@linux:~/tutorial > jf_report -j jf_tut_foo-journal
<?xml version="1.0" encoding="UTF-8"? >

<journal >

<header magic_number="0x41524153" version="1" file_id_mask="0x38’
file_id_mask_shift="3" size_mask="0xffffffcO’ size_mask_shift="6’
file_size="4194304’ file_num="3" rotation_threshold="0.800’

ctrl_recs="36" journal_recs="32980" / >
<journaled_file_table max_files='8' number_of_files="1’
file_table="0x804b170’ >
<file id="0' name='jf_tut_foo-journal’ last_pos='32980" last_size="0’
status="'0" last_uc_pos="0" last_uc_size="32980" stream="0x804b008’ / >
<ljournaled_file_table >
<records >

</records >
<ljournal >

a journal able to manage at least 5 journaled files has been created. Looking at the output produced by
jf_report we can see the created journal can manage up to 7 (8 - 1) journaled files. First journaled file is
reserved because it's the journal itself.

5.2. jf_join: join a journal

Sometimes you have a journal and a standard, not journaled, file you would like to use as a journaled file:
you can usgf_join utility program to add your file to the list of journaled files managed by the journal.
This is a usage example (the journal has been created at the previous paragraph):

tiian@linux:~/tutorial > Is -la > jf_tut_foo-datal
tiian@linux:~/tutorial > Is -la jf_tut_foo-*

48

Chapter 5. Utility programs

-rw-r--r-- 1 tiian users 2038 2005-08-29 22:22 jf tut_foo-datal
-rw-r--r-- 1 tiian users 8278 2005-08-29 22:12 jf tut_foo-journal

tiian@linux:~/tutorial > jf_join -j jf_tut_foo-journal jf_tut foo-datal
tiian@linux:~/tutorial > jf_report -j jf_tut_foo-journal
<?xml version="1.0" encoding="UTF-8"? >

<journal >
<header magic_number="0x41524153" version="1" file_id_mask="0x38’
file_id_mask_shift="3" size_mask="0xffffffcO’ size_mask_shift="6’
file_size="4194304" file_num='3" rotation_threshold="0.800’

ctrl_recs='36" journal_recs='32980" / >
<journaled_file_table max_files="8" number_of_files="2’
file_table="0x804b170’ >
<file id="0" name='jf_tut_foo-journal’ last_pos='32980" last_size="0’
status="0" last_uc_pos="0" last_uc_size="32980" stream="0x804b008’ / >
<file id="1" name='jf_tut_foo-datal’ last_pos='0" last_size="791’
status="'0" last_uc_pos="0" last_uc_size="0" stream="(nil)’ / >
<ljournaled_file_table >

<records >
</[records >
<ljournal >

file jf_tut_foo-datal has been joined to journfl tut_foo-journal and can now be used with
libjf API.

5.3. jf_rename: rename a journaled file

A journaled file can not be renamed using standard operating system commaifg/¢u are playing in
a UNIX-like environment) because journal must be updated with the new name. Utility program
jf_rename has been designed to help you when a journaled file rename must be performed:

tiian@linux:~/tutorial > jf_rename -j jf_tut_foo-journal -n jf_tut foo-data2 \
> jf_tut_foo-datal

tiian@linux:~/tutorial > jf_report -j jf_tut_foo-journal

<?xml version="1.0" encoding="UTF-8"? >

<journal >
<header magic_number='0x41524153" version="1" file_id_mask="0x38’
file_id_mask_shift="3" size_mask="0xffffffcO’ size_mask_shift="6’
file_size="4194304" file_num='3" rotation_threshold="0.800’

ctrl_recs='36" journal_recs='32980" / >
<journaled_file_table max_files="8" number_of_files="2’
file_table="0x804b170’ >
<file id="0" name='jf_tut_foo-journal’ last_pos='32984" last_size="0’
status="0" last_uc_pos="0" last_uc_size="32984" stream="0x804b008’ / >
<file id="1" name='jf_tut_foo-data2’ last_pos='0" last_size="791’
status="'0" last_uc_pos="0" last_uc_size="0" stream="(nil)’ / >
</journaled_file_table >
<records >
<rollback jrn_rec_off="32980" file_id="0"/ >

</records >

49

Chapter 5. Utility programs

<ljournal >

5.4. jf leave: leave a journal

Sometimes you have to update a journaled file with a tool that’s not libjf enabled: there are a lot of them
around the world... Take a look to this example:

tian@linux:~/tutorial > echo "John" > jf tut_foo-data3
tiian@linux:~/tutorial > echo "Patty" >> jf_tut_foo-data3
tiian@linux:~/tutorial > cat jf_tut_foo-data3

John

Patty

tiian@linux:~/tutorial > jf_join -j jf_tut_foo-journal jf_tut_foo-data3
tiian@linux:~/tutorial > jf_report -j jf_tut_foo-journal

<?xml version="1.0" encoding="UTF-8"? >

<journal >

<header magic_number='0x41524153" version="1" file_id_mask="0x38’
file_id_mask_shift="3" size_mask="0xffffffcO’ size_mask_shift="6’
file_size="4194304" file_num="3" rotation_threshold="0.800’

ctrl_recs="36" journal_recs="32980" / >
<journaled_file_table max_files="8" number_of_files="3’
file_table="0x804b170’ >
<file id="0" name='jf_tut_foo-journal’ last_pos='32988" last_size="0’
status="'0" last_uc_pos="0" last_uc_size="32988" stream="0x804b008’ / >
<file id="1" name='jf_tut_foo-data2’ last_pos='0" last_size="1075’
status='0" last_uc_pos="0" last_uc_size="0" stream="(nil)’ / >
<file id="2" name='jf_tut_foo-data3’ last _pos='0" last_size="11’
status='0" last_uc_pos="0" last_uc_size='0" stream="(nil)’ / >
</journaled_file_table >
<records >
<rollback jrn_rec_off="32980" file_id="0"/ >
<rollback jrn_rec_off="32984’ file_id="0"/ >

</records >
<ljournal >

one second aftgf_join we have realized our journaled fifetut_foo-data3 must be fixed. We can
not update the journaled file using shell tools because journal would not be aware of them: we have to
temporarily detach the journaled file from journal:

tiian@linux:~/tutorial > jf_leave -j jf_tut_foo-journal jf_tut_foo-data3
tiian@linux:~/tutorial > jf_report -j jf_tut_foo-journal

<?xml version="1.0" encoding="UTF-8"? >

<journal >

<header magic_number='0x41524153" version="1" file_id_mask="0x38’
file_id_mask_shift="3" size_mask="0xffffffcO’ size_mask_shift="6’
file_size="4194304’ file_num='3" rotation_threshold="0.800’

50

Chapter 5. Utility programs

ctrl_recs='36" journal_recs='32980" / >
<journaled_file_table max_files="8" number_of_files="2’
file_table="0x804b170’ >
<file id="0' name='jf_tut_foo-journal’ last_pos="32984" last_size="0’
status="0" last_uc_pos="0" last_uc_size="32984" stream="0x804b008’ / >
<file id="1" name='jf_tut_foo-data2’ last_pos='0" last_size="1075’
status="0" last_uc_pos='0" last_uc_size='0" stream="(nil)’ / >
<ljournaled_file_table >
<records >
<rollback jrn_rec_off="32980" file_id="0"/ >

</[records >
<fjournal >

now we can update and join again:

tiian@linux:~/tutorial > echo "Roger" >> jf tut foo-data3
tiian@linux:~/tutorial > echo "Kelly" >> jf_tut_foo-data3
tiian@linux:~/tutorial > jf_join -j jf_tut_foo-journal jf_tut_foo-data3
tiian@linux:~/tutorial > jf_report -j jf_tut_foo-journal

<?xml version="1.0" encoding="UTF-8"? >

<journal >

<header magic_number="0x41524153" version="1" file_id_mask="0x38’
file_id_mask_shift="3" size_mask="0xffffffcO’ size_mask_shift="6’
file_size="4194304’ file_num="3" rotation_threshold="0.800’

ctrl_recs='36" journal_recs="32980" / >
<journaled_file_table max_files='8" number_of_files='3’
file_table="0x804b170’ >
<file id="0' name='jf_tut_foo-journal’ last_pos='32988" last_size="0’
status="'0" last_uc_pos="0" last_uc_size="32988" stream="0x804b008’ / >
<file id="1" name='jf_tut_foo-data2’ last_pos="0" last_size="1075’
status="'0" last_uc_pos="0" last_uc_size='0" stream="(nil)’ / >
<file id="2" name='jf_tut_foo-data3’ last_pos='0" last_size="22’
status='0" last_uc_pos="0" last_uc_size='0" stream="(nil)’ / >
</journaled_file_table >
<records >
<rollback jrn_rec_off="32980’ file_id="0"/ >
<rollback jrn_rec_off="32984’ file_id="0"/ >

</records >
<fljournal >

Warning

If you update a journaled file with a program that does not use libjf API, your data
can be loss when a libjf based application opens the journal and/or access the
specific journaled file. If you are planning to use the files produced by libjf enabled
application in a legacy environment, batch procedures to “leave & update & join”
journal must be implemented.

51

Chapter 5. Utility programs
5.5. jf_report: inspecting a journal

We've done it many times through this tutorial usifigreport utility program; the only info you may
need is thed flag meaning: you can specify if data must be showed as hexadecimal, text or both. Use

option to show a brief help.

5.6. jf_recover: recover a journal

To recover a journal after an application/system crash you should useover utility program we have
discussed in a previous chapter (Sstion 3.4 The only warning we can suggest you is this:

Warning

using a journaling tool like libjf does not mean you don'’t need your old friend
backup tool! Please pay attention: journal too must be backed up.

5.7. jf_bench: performance measurement

Utility programjf_bench is specifically designed to measure libjf absolute performances and to compare
the performance of libjf with standard C I/O. The detailed description of this utility is outside the scope
of the tutorial, but you can find out more information in FAQ distributed with package and/or available
online.

52

Chapter 6. Debugging applications

“A bug is a test case you haven't written
yet.”

Mark Pilgrim - “Dive Into Python”

Writing source code is only the first step in application development. In the real life a programmer is a
debugger, not a coder.

6.1. printf approach

The first debugging tool igrintf function. Most libjf function returns a “return code” of type int. File
jffif_errors.h contains all the available return codes, but you probably would a more human
readable error code than an integer value. Fungtiatrerror returns a description for every return
code documented ijftjf_errors.h . This is a little usage example:

Example 6-1.jf_strerror.c

#include <jf_file.h >

int main()

{
int rc;
jf_file_t jf;

rc = jf_file_close(&jf);
if (JF_RC_OK != rc) {
fprintf(stderr, "libjf error: %s (%d)\n",
jf_strerror(rc), rc);
return 1;

}

return O;

You can compile it with this command:

libtool --mode=link gcc -Wall-l/opt/libjf/include -L/opt/libjf/lib -ljf \
-0 jf_strerror jf_strerror.c

Trying to execute this foolish program you should get an error like this one:

tian@linux:~/tutorial> ./jf_strerror

53

Chapter 6. Debugging applications

libjf error: ERROR: object is corrupted (-9)

6.1.1. Error codes’ rule of thumb

JF_RC_OKis the return code every API should return. Warning values are values largelRlR@_OK
Error values are values smaller thith RC_OK

Warning

You should never use numeric constant when checking libjf API return codes.

6.2. The trace approach

Many times the code returned by the invoked function is not sufficient to understand what’s happening:
libjf is developed using an “exception oriented programming style” | named “sequential programming”
some times ago. The idea at the root of this programming style is: “nidification is a bad thing, try to write
code with as small nidification as possible”.

To see the “stack trace” of the called function, you must do two things:

- activate “debug” feature when building libjf:

Jconfigure --enable-debug
make

make check

sudo make install

« set environment variabléF TRACE_MASHKefore start your program:
export JF_TRACE_MASK=0xffffffff

Once you performed these two steps, you can run your program again:

tian@linux:~/tutorial> ./jf_strerror
jf_file_close
jf_file_close/excp=0/ret_cod=-9/errno=0

libjf error: ERROR: object is corrupted (-9)

54

Chapter 6. Debugging applications

When running a complex application, mask “Oxffffffff” will produce a lot of messages, too many
messages. To determine the value you need, take a look jfjffiteace.h :you can
activate/deactivate the trace feature at module level and get only the messages you need. This is an
excerpt ofjf/jf_trace.h

(]

/**

* trace module for library module "jf_cache_file"

*

#define JF_TRACE_MOD_LIB_CACHE_FILE 0x00000001

/**

* trace module for library module "jf_crash_simul"

*

#define JF_TRACE_MOD_LIB_CRASH_SIMUL 0x00000002

/**

* trace module for library module "jf_file"

*/

#define JF_TRACE_MOD_LIB_FILE 0x00000004

/**

* trace module for library module "jf journal_file_tab"

*/

#define JF_TRACE_MOD_LIB_JOURNAL_FILE_TAB 0x00000008

/**

* trace module for library module "jf_utils"

*/

#define JF_TRACE_MOD_LIB_UTILS 0x00000010

/**

* trace module for library module "jf journal"

*/

#define JF_TRACE_MOD_LIB_JOURNAL 0x00000020
[-]

if you need only messages printed by “jf_journal” and “jf_file” modules, you have to set
JF_TRACE_MASKo “0x00000024". Any combination of values is allowed.

Warning

Don't use a library built with “debug” feature in production environment:
performances may degrade even if JF_TRACE_MASKS not set.

55

Chapter 6. Debugging applications

6.2.1. How can | guess if libjf was compiled with debug
feature?

If you don’t remember how libjf was compiled or someone but you installed it, you can retrieve
configuration features with this command:

tian@linux:~> strings /opt/libjf/lib/libjf | grep ‘feature/’
feature/timer = yes

feature/debug = yes

feature/crash_simul = no

feature/cache_stress = no

feature/extra_check = no

pay attention the actual name of the library is system dependent: it colitgflae , libjf.so ,
libjf.sl , etc...

6.3. The debugger approach

Sometimes the bug is very hard to discover and/or to fix and something morngrititan and trace
must be used. If you need to debug your application using a tooytike you must build libjf activating
debug feature as shown 8ection 6.2

56

Appendix A. GNU Free Documentation License

A.1l. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document
"free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with
or without modifying it, either commercially or non-commercially. Secondarily, this License preserves
for the author and publisher a way to get credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of "copyleft”, which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual
work, regardless of subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose is instruction or reference.

A.2. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated
herein. The "Document”, below, refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a
way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of

57

Appendix A. GNU Free Documentation License

Invariant Sections, in the notice that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections
then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document

straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or
(for drawings) some widely available drawing editor, and that is suitable for input to text formatters or

for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an
otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or
discourage subsequent modification by readers is not Transparent. An image format is not Transparent if
used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image
formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and
edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools
are not generally available, and the machine-generated HTML, PostScript or PDF produced by some
word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which

do not have any title page as such, "Title Page" means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ
or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications",
"Endorsements"”, or "History".) To "Preserve the Title" of such a section when you modify the Document
means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License
applies to the Document. These Warranty Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other implication that these Warranty
Disclaimers may have is void and has no effect on the meaning of this License.

58

Appendix A. GNU Free Documentation License

A.3. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

A.4. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front

cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed
(as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each
Opague copy a computer-network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent copy of the Document, free
of added material. If you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible
at the stated location until at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them a chance to provide you with an updated version of the
Document.

A.5. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and

59

Appendix A. GNU Free Documentation License

3 above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

GNU FDL Modification Conditions

A.

C.
D.
E.

Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from
those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that version
gives permission.

. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the

modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

State on the Title page the name of the publisher of the Modified Version, as the publisher.
Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use

G.

the Modified Version under the terms of this License, in the form shown iAtiitEndumbelow.

Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in
the Document’s license notice.

. Include an unaltered copy of this License.

. Preserve the section Entitled "History”, Preserve its Title, and add to it an item stating at least the

title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is
no section Entitled "History" in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

.Preserve the network location, if any, given in the Document for public access to a Transparent copy

of the Document, and likewise the network locations given in the Document for previous versions it
was based on. These may be placed in the "History" section. You may omit a network location for a
work that was published at least four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

. For any section Entitled "Acknowledgements" or "Dedications”, Preserve the Title of the section,

and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section

numbers or the equivalent are not considered part of the section titles.

. Delete any section Entitled "Endorsements"”. Such a section may not be included in the Modified

\ersion.

. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any

Invariant Section.

. Preserve any Warranty Disclaimers.

60

Appendix A. GNU Free Documentation License

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some or
all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version'’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your
Modified Version by various parties--for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

A.6. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms
defined insection 4above for modified versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of
your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a unigue number. Make the
same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled "History" in the various original documents,
forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements",
and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

A.7. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is

61

Appendix A. GNU Free Documentation License

included in the collection, provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License
in all other respects regarding verbatim copying of that document.

A.8. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights of the compilation’s users beyond what
the individual works permit. When the Document is included in an aggregate, this License does not apply
to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the
Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole
aggregate.

A.9. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special permission
from their copyright holders, but you may include translations of some or all Invariant Sections in
addition to the original versions of these Invariant Sections. You may include a translation of this
License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of those notices and
disclaimers. In case of a disagreement between the translation and the original version of this License or
a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements”, "Dedications", or "History", the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

A.10. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or

62

Appendix A. GNU Free Documentation License

rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

A.11. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

A.12. ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the License in the document and
put the following copyright and license notices just after the title page:

Sample Invariant Sections list

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy
of the license is included in the section entitled "GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line
with this:

Sample Invariant Sections list

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the
Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those
two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public

63

Appendix A. GNU Free Documentation License

License, to permit their use in free software.

64

	Journaled File LIBrary (libjf) tutorial
	Table of Contents
	List of Tables
	List of Examples
	About This Book
	1. Acknowledgments
	2. Revision History
	3. Source and preformatted versions available
	4. Typographical Conventions
	5. English language and other ads

	Chapter 1. Introduction
	1.1. Trademarks
	1.2. What's libjf?
	1.3. What's a transaction?
	A transaction is a unit of work that has the following (ACID) properties.

	1.4. What's file journaling?
	1.4.1. Data integrity issue examples
	1.4.2. Data integrity issue with only one file

	1.5. Who should use libjf?
	1.6. What libjf is not?
	1.7. Collaboration

	Chapter 2. Getting started
	2.1. Supported architectures
	2.2. Retrieving and installing
	2.2.1. Package name
	libjfv.r.pc.a.eYYYYMMDDhhmm.tar.bz2

	2.2.2. Uninstalling

	2.3. Hello world program
	Hello world code explanation
	2.3.1. Hello world compilation
	options:

	2.3.2. Hello world execution

	2.4. Hello world II
	2.5. Hello world III
	Hello world III code explanation
	2.5.1. Hello world III compile run

	2.6. Hello world saga conclusions

	Chapter 3. libjf basics
	3.1. Many journaled files, one journal
	twofiles.c code explanation
	3.1.1. twofiles.c compile and run
	3.1.2. twofiles.c interesting aspects

	3.2. Two journaled files and an application crash
	twofilescrash.c is slightly different than twofiles.c:

	3.3. Two journaled files and a partial transaction
	3.4. The recovery pending status
	3.4.1. Automatic recovery

	3.5. Text files
	3.5.1. Conclusions
	3.5.2. Future developments

	3.6. Restartable reads
	restartablereads.c code explanation
	3.6.1. Compilation and execution
	3.6.2. Restartable reads and rollback
	3.6.3. Conclusions

	3.7. Other open mode options

	Chapter 4. Diving into libjf
	4.1. Synchronization type
	4.1.1. libjf fast synchronization
	4.1.2. libjf safe synchronization
	4.1.3. How can an application choose the type of synchronization?
	4.1.4. Playing with synchronization type
	4.1.5. How is synchronization tested?

	4.2. Journaling and caching
	cachesize.c source code explanation
	4.2.1. Compilation and execution
	4.2.2. How cache size limit can be tuned

	4.3. libjf object options

	Chapter 5. Utility programs
	5.1. jfcreate: journal creation
	5.2. jfjoin: join a journal
	5.3. jfrename: rename a journaled file
	5.4. jfleave: leave a journal
	5.5. jfreport: inspecting a journal
	5.6. jfrecover: recover a journal
	5.7. jfbench: performance measurement

	Chapter 6. Debugging applications
	6.1. printf approach
	6.1.1. Error codes' rule of thumb

	6.2. The trace approach
	6.2.1. How can I guess if libjf was compiled with debug feature?

	6.3. The debugger approach

	Appendix A. GNU Free Documentation License
	A.1. PREAMBLE
	A.2. APPLICABILITY AND DEFINITIONS
	A.3. VERBATIM COPYING
	A.4. COPYING IN QUANTITY
	A.5. MODIFICATIONS
	A.6. COMBINING DOCUMENTS
	A.7. COLLECTIONS OF DOCUMENTS
	A.8. AGGREGATION WITH INDEPENDENT WORKS
	A.9. TRANSLATION
	A.10. TERMINATION
	A.11. FUTURE REVISIONS OF THIS LICENSE
	A.12. ADDENDUM: How to use this License for your documents
	Sample Invariant Sections list
	Sample Invariant Sections list

